Reduced rank and normalising elements

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Rank Channel Estimation

A space-time wireless communication channels can be decomposed as a set of filters, each consisting of a scalar temporal filter followed by a single spatial signature vector. If only a small number of such filters is necessary to accurately describe the space time channel, we call it a reduced rank channel. We here consider different methods of exploiting this property to improve channel estima...

متن کامل

Nonparametric Reduced Rank Regression

We propose an approach to multivariate nonparametric regression that generalizes reduced rank regression for linear models. An additive model is estimated for each dimension of a q-dimensional response, with a shared p-dimensional predictor variable. To control the complexity of the model, we employ a functional form of the Ky-Fan or nuclear norm, resulting in a set of function estimates that h...

متن کامل

Combined Reduced-Rank Transform

We propose and justify a new approach to constructing optimal nonlinear transforms of random vectors. We show that the proposed transform improves such characteristics of rank-reduced transforms as compression ratio, accuracy of decompression and reduces required computational work. The proposed transform Tp is presented in the form of a sum with p terms where each term is interpreted as a part...

متن کامل

Reduced Rank Space-Time Equalization

In wireless communication systems with antenna arrays the spatiotemporal channel can often be described by a low-rank model. By exploiting this information, corresponding low rank equalizers with reduced complexity can be designed. By applying such low rank equalizers to a set of uplink measurements, we demonstrate that the performance loss associated with the lower complexity is small.

متن کامل

Reduced-Rank Hidden Markov Models

We introduce the Reduced-Rank Hidden Markov Model (RR-HMM), a generalization of HMMs that can model smooth state evolution as in Linear Dynamical Systems (LDSs) as well as non-log-concave predictive distributions as in continuous-observation HMMs. RR-HMMs assume anm-dimensional latent state and n discrete observations, with a transition matrix of rank k ≤ m. This implies the dynamics evolve in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1988

ISSN: 0021-8693

DOI: 10.1016/0021-8693(88)90169-x